

Welcome to konfetti’s documentation!

Contents:

	Usage
	Lazy evaluation

	Environment

	Vault

	Testing

	Extending configuration

	Extras

	Django integration

	Flask extension

	Configuration 101
	Do not access configuration on the module level

	Contributing
	Code formatting

	Testing

	Changelog
	Unreleased

	`0.8.0`_ - 2020-01-15

	0.7.2 - 2019-07-18

	0.7.1 - 2019-07-17

	0.7.0 - 2019-07-15

	0.6.0 - 2019-06-30

Indices and tables

	Index

	Module Index

	Search Page

Usage

Table of contents:

	Lazy
evaluation [https://github.com/kiwicom/konfetti#lazy-evaluation]

	Environment [https://github.com/kiwicom/konfetti#environment]

	Vault [https://github.com/kiwicom/konfetti#vault]

	Testing [https://github.com/kiwicom/konfetti#testing]

Lazy evaluation

Until a config option is accessed it is not evaluated - it is lazy. To
avoid side effects on imports accessing configuration should be avoided
on a module level.

This concept allows you to choose when you actually evaluate the config.
Why?

	Testing. If you need to test a small piece of code that doesn’t
require any configuration - you don’t have to setup it;

	Faster application startup; Use only what you need at the moment

It is still possible to evaluate the config eagerly on the app startup -
access the needed variables in the entry points. It could be done either
with direct accessing needed variables or with config.require(...) /
config.asdict() calls.

Environment

from konfetti import env

VARIABLE = env("VARIABLE_NAME", default="foo")

Since environment variables are strings, there is a cast option to
convert given variable from a string to the desired type:

from konfetti import env

VARIABLE = env("VARIABLE_NAME", default=42, cast=int)

You can pass any callable as cast. list, tuple, set and frozenset will
recognize comma separated values:

LIST = env("LIST", cast=list)
1,2,3
In [1]: config.LIST
["1", "2", "3"]

Those container types accept also subcast that will be applied to each element of the container:

LIST = env("LIST", cast=list, subcast=int)
1,2,3
In [1]: config.LIST
[1, 2, 3]

If there is a need to use the environment variable immediately, it could be evaluated via str call
(other ways could be added on demand):

from konfetti import env, vault

DATABASE_ROLE = env("DATABASE_ROLE", default="booking")

DATABASE_URI = vault(f"db/{DATABASE_ROLE}")

If cast is specified, then it will be applied before evaluation as
well.

.env support

It is possible to specify a path to the .env file and it will be
used as a source of data for environment variables.

dotenv_override parameter specifies whether the .env value
should be used if both the environment variable and the .env record
exists, False by default.

app_name/settings/__init__.py
from konfetti import Konfig

config = Konfig(dotenv="path/to/.env", dotenv_override=False)

Vault

Backend configuration

To use Vault as a secrets storage you need to configure the access
point:

app_name/settings/__init__.py
from konfetti import Konfig, AsyncVaultBackend

config = Konfig(vault_backend=AsyncVaultBackend("your/prefix"))

There are two Vault backends available:

	konfetti.VaultBackend

	konfetti.AsyncVaultBackend

The main difference is that the latter requires using await to
access the secret value (the call will be handled asynchronously under
the hood), otherwise the interfaces and capabilities are the same.

Each backend requires a prefix to be specified, the trailing /
leading slashes don’t matter, "your/prefix" will work the same as
"/your/prefix/".

There are two ways to provide access credentials:

	via VAULT_TOKEN environment variable for token-based auth method

	via VAULT_USERNAME and VAULT_PASSWORD environment variables for userpass auth method

If both are provided, token will be tried first and userpass credentials next in case of expired token.

Access credentials must be specified as a part of configuration.

app_name/settings/production.py
VAULT_TOKEN = env("VAULT_TOKEN")
VAULT_USERNAME = env("VAULT_USERNAME")
VAULT_PASSWORD = env("VAULT_PASSWORD")

Usage

Every Vault secret needs a path to be used as a lookup (leading and
trailing slashes don’t matter as well):

app_name/settings/production.py
from konfetti import vault

WHOLE_SECRET = vault("path/to")

In this case all key/value pairs will be loaded on evaluation:

In [1]: from app_name.settings import config
In [2]: await config.WHOLE_SECRET
{'key': 'value', 'foo': 'bar'}

You can specify a specific key to be returned for a config option with
[] syntax:

app_name/settings/production.py
from konfetti import vault

KEY = vault("path/to")["key"]

In [1]: from app_name.settings import config
In [2]: await config.KEY
value

Using square brackets will not trigger evaluation - you could specify as
many levels as you want:

app_name/settings/production.py
from konfetti import vault

DEEP = vault("path/to")["deeply"]["nested"]["key"]

Casting could be specified as well:

app_name/settings/production.py
from decimal import Decimal
from konfetti import vault

DECIMAL = vault("path/to", cast=Decimal)["fee_amount"] # stored as string

In [1]: from app_name.settings import config
In [2]: await config.DECIMAL
Decimal("0.15")

Sometimes you need to access to some secrets dynamically. Konfig
provides a way to do it:

In [1]: from app_name.settings import config
In [2]: await config.get_secret("path/to")["key"]
value

Secret files

It is possible to get a file-like interface for vault secret.

app_name/settings/production.py
from konfetti import vault_file

KEY = vault_file("path/to/file")["key"]

In [1]: from app_name.settings import config
In [2]: (await config.KEY).readlines()
[b'value']

Defaults

It is possible to specify the default value for vault variable. Value
could be any type for a key in a secret and a dict for the whole
secret.

DEFAULT = vault("path/to", default="default")["DEFAULT"]
DEFAULT_SECRET = vault("path/to", default={"DEFAULT_SECRET": "default_secret"})

In [1]: from app_name.settings import config
In [2]: await config.DEFAULT
"default"
In [3]: await config.DEFAULT_SECRET
{"DEFAULT_SECRET": "default_secret"}

Defaults could be disabled entirely if VAULT_DISABLE_DEFAULTS is set

$ export VAULT_DISABLE_DEFAULTS="true"

Overriding Vault secrets

In some cases, secrets need to be overridden in runtime on the
application level. You can define some custom values for tests or you
just want to run the app with some different configuration without
changing data in Vault.

There is a way to do it using environment variables or .env records
To redefine certain config option you need to redefine the whole secret
with a JSON encoded string.

Example:

app_name/settings/production.py
from konfetti import vault

KEY = vault("path/to")["key"]

In [1]: from app_name.settings import config
In [2]: await config.KEY
value
In [3]: import os
In [4]: os.environ["PATH__TO"] = '{"key": "overridden"}'
In [5]: await config.KEY
overridden

To check how to override certain option there is a
config.vault.get_override_examples() helper:

In [1]: config.vault.get_override_examples()
{
 "NESTED_SECRET": {
 "PATH__TO__NESTED": '{"NESTED_SECRET": {"nested": "example_value"}}'
 },
 "SECRET": {
 "PATH__TO": '{"SECRET": "example_value"}'
 },
 "WHOLE_SECRET": {
 "PATH__TO": "{}"
 },
}

By default, when the evaluation will happen on a Vault secret, the
environment will be checked first. If you don’t need this behavior, it
could be turned off with try_env_first=False option to the chosen
backend:

app_name/settings/__init__.py
from konfetti import Konfig, AsyncVaultBackend

config = Konfig(vault_backend=AsyncVaultBackend("your/prefix", try_env_first=False))

Disabling access to secrets

If you want to forbid any access to Vault (e.g. in your tests) you can
set KONFETTI_DISABLE_SECRETS environment variable with 1 /
on / true / yes.

In [1]: import os
In [2]: from app_name.settings import config
In [3]: os.environ["KONFETTI_DISABLE_SECRETS"] = "1"
In [4]: (await config.get_secret("path/to"))["key"]
...
RuntimeError: Access to secrets is disabled. Unset KONFETTI_DISABLE_SECRETS variable to enable it.

Caching

Vault values could be cached in memory:

config = Konfig(vault_backend=AsyncVaultBackend("your/prefix", cache_ttl=60))

By default, caching is disabled.

Retries

Vault calls would be retried in case of network issues, by default it is 3 attempts or up to 15 seconds.

This behavior could be changed via vault backend options

config = Konfig(vault_backend=AsyncVaultBackend("your/prefix", max_retries=3, max_retry_time=15))

Also it is possible to pass retrying object with custom behavior, e.g. tenacity.Retrying or tenacity.AsyncRetrying [https://github.com/jd/tenacity]:

Lazy options

If there is a need to calculate config options dynamically (e.g., if it
depends on values of other options) konfetti provides lazy:

from konfetti import lazy

LAZY_LAMBDA = lazy(lambda config: config.KEY + "/" + config.SECRET + "/" + config.REQUIRED)

@lazy("LAZY_PROPERTY")
def lazy_property(config):
 return config.KEY + "/" + config.SECRET + "/" + config.REQUIRED

Testing

It is usually a good idea to use a slightly different configuration for
tests (disabled tracing, sentry, etc.).

export KONFETTI_SETTINGS=app_name.settings.tests

It is very useful to override some config options in tests.
Konfig.override will override config options defined in the settings
module. It works as a context manager or a decorator to provide explicit
setup & clean up for overridden options.

from app_name.settings import config

DEBUG will be `True` for `test_everything`
@config.override(DEBUG=True)
def test_everything():
 # DEBUG will be `False` again for this block
 with config.override(DEBUG=False):
 ...

Overrides could be nested, and deeper level has precedence over all
levels above:

from app_name.settings import config

@config.override(FOO=1, BAR=2)
def test_many_things():
 with config.override(BAR=3):
 assert config.FOO == 1
 assert config.BAR == 3
 # As it was before
 assert config.BAR == 2

Also, override works for classes (including inherited from
unittest.TestCase):

@config.override(INTEGER=123)
class TestOverride:

 def test_override(self):
 assert config.INTEGER == 123

 @config.override(INTEGER=456)
 def test_another_override(self):
 assert config.INTEGER == 456

def test_not_affected():
 assert config.INTEGER == 1

NOTE. setup_class/setUp and teardown_class/tearDown methods will
work with override.

konfetti includes a pytest integration that gives you a fixture,
that allows you to override given config without using a context
manager/decorator approach and automatically rollbacks changes made:

import pytest
from app_name.settings import config
from konfetti.pytest_plugin import make_fixture

create a fixture. the default name is "settings",
but could be specified via `name` option
make_fixture(config)

@pytest.fixture
def global_settings(settings):
 settings.INTEGER = 456

@pytest.mark.usefixtures("global_settings")
def test_something(settings):
 assert settings.INTEGER == 456
 assert config.INTEGER == 456

 # fixture overriding
 settings.INTEGER = 123
 assert settings.INTEGER == 123
 assert config.INTEGER == 123

 # context manager should work as well
 with settings.override(INTEGER=7):
 assert settings.INTEGER == 7
 assert config.INTEGER == 7

 # Context manager changes are rolled back
 assert settings.INTEGER == 123
 assert config.INTEGER == 123

This test is not affected by the fixture
def test_disable(settings):
 assert config.INTEGER == 1
 assert settings.INTEGER == 1

NOTE. It is forbidden to create two fixtures from the same config
instances.

Extending configuration

Sometimes configuration is distributed to multiple places - python modules, JSON files, etc. To handle
everything seamlessly there is a couple of methods:

config = Konfig()
config.extend_with_object("path.to.module")
config.extend_with_object({"KEY": "value"})
config.extend_with_json("/path/to.json")

Importable strings and JSON files will be loaded lazily on the first access.

Extras

The environment variable name could be customized via
config_variable_name option:

config = Konfig(config_variable_name="APP_CONFIG")

Alternatively, it is possible to specify class-based settings:

from konfetti import env, vault

class ProductionSettings:
 VAULT_ADDR = env("VAULT_ADDR")
 VAULT_TOKEN = env("VAULT_TOKEN")

 DEBUG = env("DEBUG", default=False)
 DATABASE_URI = vault("path/to/db")

It possible to load the whole config and get its content as a dict:

In [1]: await config.asdict()
{
 "ENV": "env value",
 "KEY": "static value",
 "SECRET": "secret_value",
}

If you need to validate that certain variables are present in the
config, there is require:

In [1]: config.require("SECRET")
...
MissingError: Options ['SECRET'] are required

Or to check that they are defined:

In [1]: "SECRET" in config
True

Django integration

To magically convert django.conf.settings into konfetti config object, add this to the very end
of your project settings module.

config = install(
 __name__,
 vault_backend=VaultBackend("your/prefix")
)

Having this will allow the application to use settings, defined via vault, env and other types from konfetti.

Flask extension

There is an extension for Flask that replaces Flask.config with Konfig instance and adds
all konfetti features to your app.config.

from flask import Flask
from konfetti.contrib.flask import FlaskKonfig
from .settings import config

app = Flask(__name__)
FlaskKonfig(app, config, CUSTOM_OPTION=42)

...

Taken from Vault
assert app.config.SECRET == "value"
Manually specified
assert app.config.CUSTOM_OPTION == 42

Configuration 101

There are a couple of principles that will help you to avoid problems
when you specify or use your configuration.

Do not access configuration on the module level

Do this:

from app_name.settings import config

def get_redis_client():
 return StrictRedis.from_url(config.REDIS_URL)

Instead of this:

from redis import StrictRedis
from app_name.settings import config

cache_redis = StrictRedis.from_url(config.REDIS_URL)

In this case on each usage the redis client will be re-evaluated, which
might be not good for performance reasons.

As an alternative you could have a global Redis instance by using
python-lazy-object-proxy:

pip install lazy-object-proxy

import lazy_object_proxy

...

cache_redis = lazy_object_proxy.Proxy(get_redis_client)

NOTE. Do not forget to clean up shared resources when it is needed,
usually on the application / testcase teardown.

Why?

Accessing configuration on the module level leads to side-effects on
imports, this fact could produce unrelated errors when you run your test
suite:

	Simple unit tests will fail due to lack of configuration options or
Vault unavailability;

	Slow tests due to config initialization and long network calls (they
could time out as well);

Having your config access lazy will prevent many for those cases because
that code branches won’t be executed on imports and will not affect your
test suite.

Contributing

Code formatting

In order to maintain code formatting consistency we use
black [https://github.com/ambv/black/] to format the python files. A
pre-commit hook that formats the code is provided but it needs to be
installed on your local git repo, so…

In order to install the pre-commit framework run
pip install pre-commit or if you prefer homebrew
brew install pre-commit

Once you have installed pre-commit just run pre-commit install on
your repo folder

If you want to exclude some files from Black (e.g. automatically
generated database migrations or test
snapshots [https://github.com/syrusakbary/snapshottest]) please
follow instructions for
pyproject.toml [https://github.com/ambv/black#pyprojecttoml]

Testing

To run all tests:

docker run -p 8200:8200 -d --cap-add=IPC_LOCK -e 'VAULT_DEV_ROOT_TOKEN_ID=test_root_token' vault:0.9.6
tox -p all

Note that tox doesn’t know when you change the requirements.txt and
won’t automatically install new dependencies for test runs. Run
pip install tox-battery to install a plugin which fixes this
silliness.

It also possible to run tests via docker-compose that will start up all
required environment:

$ make docker-test

or alternatively:

$ docker-compose -f docker-compose-tests.yml run konfetti

Changelog

Unreleased [https://github.com/kiwicom/konfetti/compare/0.7.0...HEAD]

`0.8.0`_ - 2020-01-15

Added

	Add keys to environment variable name before search in Vault.

Fixed

	Change Flask KonfigProxy to behave like Flask config.

0.7.2 [https://github.com/kiwicom/konfetti/compare/0.7.1...0.7.2] - 2019-07-18

Fixed

	Modification of vault variables in [] access. #51 [https://github.com/kiwicom/konfetti/issues/51]

0.7.1 [https://github.com/kiwicom/konfetti/compare/0.7.0...0.7.1] - 2019-07-17

Fixed

	Evaluation of config options that are dictionaries. #47 [https://github.com/kiwicom/konfetti/issues/47]

0.7.0 [https://github.com/kiwicom/konfetti/compare/0.6.0...0.7.0] - 2019-07-15

Added

	Retries for Vault backends. #12 [https://github.com/kiwicom/konfetti/issues/12]

	Alternative constructors for Konfig

	Add configuration extending. #34 [https://github.com/kiwicom/konfetti/issues/34]

	Add casting for container types. #35 [https://github.com/kiwicom/konfetti/issues/35]

	Add userpass authentication method for vault #18 [https://github.com/kiwicom/konfetti/issues/18]

	Django integration. #31 [https://github.com/kiwicom/konfetti/issues/31]

	Flask integration. #32 [https://github.com/kiwicom/konfetti/issues/32]

0.6.0 - 2019-06-30

	Initial public release

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to konfetti’s documentation!

 		
 Usage

 		
 Lazy evaluation

 		
 Environment

 		
 .env support

 		
 Vault

 		
 Backend configuration

 		
 Usage

 		
 Lazy options

 		
 Testing

 		
 Extending configuration

 		
 Extras

 		
 Django integration

 		
 Flask extension

 		
 Configuration 101

 		
 Do not access configuration on the module level

 		
 Why?

 		
 Contributing

 		
 Code formatting

 		
 Testing

 		
 Changelog

 		
 Unreleased

 		
 `0.8.0`_ - 2020-01-15

 		
 Added

 		
 Fixed

 		
 0.7.2 - 2019-07-18

 		
 Fixed

 		
 0.7.1 - 2019-07-17

 		
 Fixed

 		
 0.7.0 - 2019-07-15

 		
 Added

 		
 0.6.0 - 2019-06-30

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

